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Abstract

This research report details an experiment designed to collect
and analyze electrocardiogram (ECG) data through an integrated
ECG acquisition module to monitor and assess heart health, the
main point of which is the realization of automatic heartbeat
measurement. At the same time, the influence of oversampling
and undersampling on sampling accuracy, the interference of
EMG to ECG signal, and the verification of Einthoven’s law are
also studied. The core goal of the experiment was to develop a
graphical user an application that could capture ECG data in real
time and de-noise the data, and alert when an abnormal heart rate
was detected, while saving the data and generating reports after
the test.

1 INTRODUCTION

An Electrocardiogram (ECG or EKG) is a medical test
that records the electrical activity of the heart. It works by
placing a series of electrodes on the surface of the body to
capture and record the tiny electrical impulses produced
with each beat of the heart. These electrical pulses are
displayed on paper or on a screen as waveforms that re-
flect the electrophysiological state of the heart and can
help doctors diagnose various heart conditions.

The main components of an electrocardiogram consist
of a series of peaks and troughs, usually divided into P
waves, QRS complex waves, and T waves: P wave: rep-
resents atrial depolarization, that is, the electrical activity
of atrial contractions. QRS complex wave: Represents
ventricular depolarization, that is, the electrical activity
of ventricular contraction. Q wave, R wave and S wave
are three parts of QRS complex wave. T-wave: repre-
sents ventricular repolarization, the electrical activity of
ventricular diastole. An ECG can provide the following
information:

Heart rate: The number of heart beats per minute.
Rhythm: The regularity and evenness of the heart-

beat. Conduction: Whether the conduction path of the
heart electrical signal is normal. Myocardial ischemia:
Whether the heart muscle is damaged due to insufficient
blood flow. Myocardial infarction: Whether the heart
muscle dies due to complete interruption of blood flow.
Heart disease: such as cardiomyopathy, heart valve dis-
ease, etc. An electrocardiogram is a quick, painless,
and non-invasive test that is essential for assessing heart
health. It is commonly used in emergency rooms, hospi-
tal wards, clinics and heart monitoring. Ecg results need
to be interpreted by a professional physician to ensure an
accurate diagnosis.

Now the incidence of heart disease is increasing, this ex-
periment is about the examination method of heart condi-
tion, the collection and processing of biological signals is
the key technology to achieve precision medicine and pa-
tient monitoring. Electrocardiogram (ECG) signal is one
of the important biological signals to monitor cardiac ac-
tivity, and its collection and analysis are of great signifi-
cance for the diagnosis and treatment of heart disease. In
this experiment, we use USB-6009 data acquisition mod-
ule to collect signals, use MATLAB software for process-
ing and analysis, and design a graphical user interface to
control the acquisition process and display the measure-
ment results, and realize the ECG measurement, electro-
cardiogram drawing, and heartbeat speed calculation. The
software will give an alarm when the heartbeat is too fast
or too slow. At the end of the measurement, the software
will export a data result.

2 METHOD AND MATERIAL

2.1 MATERIAL

In this electrocardiogram (ECG) acquisition experiment,
we utilized MATLAB software to design an application
for data acquisition, analysis, and visualization of cardiac
signals. The AD8232 single-lead heart rate monitor was
employed to capture the ECG signals, widely recognized
for its precision and ease of use in medical research. The
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signals were transmitted to the computer through the NI
USB-6009/6002 data acquisition module, which supports
rapid and efficient digital processing of signals. During
signal acquisition, adhesive electrodes were used to mea-
sure the heart’s electrical activity from leads I, II, and III
on the subject’s body.

2.2 PROCEDURE1: DESIGN GUI

Fig. 1: Designed GUI

We designed the application interface, as shown in figure
1 shown, including a “Start” button that allows the user to
enter acquisition time (default 10 seconds) and sampling
frequency (default 1000 Hz) to initiate acquisition of an
electrocardiogram (ECG) signal. The program uses Data
Acquisition Toolbox of MATLAB for signal Acquisition.
The collected ECG signals are displayed in the time do-
main on the first axis of the application and in the fre-
quency domain on the second axis by Fast Fourier trans-
form (FFT).

Additionally, we have developed a heart rate calculation
feature. First, the ECG data undergo preprocessing where
the signal average is subtracted to eliminate DC offset,
enabling more accurate data analysis. Then, upon click-
ing the "Filter" button, the signal is processed through an
ideal band-stop filter with cutoff frequencies set between
48-52Hz to remove the 50Hz power interference, with the
frequency response shown in Figure 2. The processed
signal is displayed on the application’s coordinate axis.
Using MATLAB’s findpeaks function, we analyze the R-
waves in the filtered time-domain signal, estimating the
heart rate (including standard deviation) by calculating the
intervals between R-waves, and displaying this rate in the
"Your HR" edit box on the interface, the found R waves
are also displayed on the time-domain signal, making it
easier for the operator to check for errors. If the heart rate
exceeds 120 beats per minute or drops below 60, the indi-
cator light will change from green to red, and a text alert

indicating the heart rate is too high or too low will be dis-
played at the bottom right of the interface, accompanied
by an audible alarm. All collected information is automat-
ically saved in the program folder, named by the time of
collection.

Fig. 2: Ideal band-stop filter

2.3 PROCEDURE 2: SYSTEM DETECTION
AND FURTHER RESEARCH

Fig. 3: System Design

To facilitate further diagnosis by specialized physicians,
we have engineered a data transmission system(Figure 3)
for online consultation. The raw data and parameters col-
lected by the test instruments and a GUI are shared with
other users via shared files. They are presented via a user-
friendly web-based user interface (WebUI).

The WebUI is primarily developed based on the Django
framework, with Python handling backend data process-
ing and a combination of HTML and JavaScript for fron-
tend display. Visualization is achieved through the Charts
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library. The system includes an independent data process-
ing workflow (Figure 4), which begins with resampling to
mitigate the effects of sampling frequency on filter perfor-
mance, specifically redirecting to 444 Hz.

Heartpy, a Python library adept at ECG signal recognition
and analysis, is utilized to provide the WebUI with a data
panel that showcases metrics such as heart rate, R-wave
intervals, and respiratory rate. At the same time, it can
also be used to check whether our heart rate calculation
results are accurate.

Fig. 4: WebUI Workflow Design

Additionally, we have incorporated the functionality to
export health reports, which also supports the cus-
tomization of report templates by developers for future
use(Figure 3 right-bottom).

2.3.1 Bandwidth and Noise Analysis

To achieve noise reduction in the initial signal, we first
conducted an in-depth analysis of the signal’s frequency
domain composition. Based on the frequency domain
characteristics, we designed band-pass filters to elimi-
nate interference such as electromyography and notch fil-
ters to mitigate electromagnetic power frequency interfer-
ence. To further optimize the noise reduction, we also
employed wavelet denoising methods and evaluated the
effectiveness by comparing the amplitude spectrum and
time-domain signals before and after denoising(Figure 4).
To comprehensively demonstrate the noise reduction ef-
fects and study the impact of electromyography on ECG
signal acquisition, we introduced the factor of forearm
muscle exertion and collected a set of signals for in-depth
research.

Additionally, we explored the impact of sampling fre-
quency on signal waveform and information loss. We
initially sampled at 1000 Hz to determine the upper fre-
quency limit fupper. Subsequently, we sampled at fre-
quencies of 5 times, 2 times, 1 time, half, and a quarter of
fupper, and compared the degree of information retention
at each sampling frequency.

Ultimately, we assessed the accuracy of our ECG acquisi-
tion system by using heart rate (HR) as an indicator. This
was done by comparing the HR calculated from the R-
wave period of the acquired signals with the HR based on
pulse measurements. We also analyzed the changes in HR
following muscle activity.

2.3.2 Verification of Einthoven’s Law

We configured the USB - 6002 to capture signals from
a single channel. During this process, the ECG data of
leads I, II, and III in the resting state were successively
collected. Then, statistical analysis of the amplitudes of
the QRS waves is to be performed for the purpose of ver-
ifying Einthoven’s Law, which examines the relationship
between the amplitude of lead II and the combined am-
plitudes of leads I and III. Additionally, potential sources
of error in this process are discussed and improvement
suggestions are provided to enhance the accuracy of the
verification.

3 RESULT

Time and frequency domain signals are obtained at a sam-
pling frequency of 400Hz. As shown in Figure 6b,c,
the blue signal is the original data source collected by
the hardware system, and the red data is obtained after
noise reduction. Select the appropriate block selection
area (single ECG signal period, energy main distribution
frequency band), and enlarge it to obtain the details of Fig-
ure 6e,f. R wave and T wave are very obvious in the long
time series, and P wave, QRS wave group and T wave can
also be clearly identified in the single period signal (Fig-
ure 6e).

From the perspective of frequency domain, the main en-
ergy distribution of ECG signal is below 25Hz (80% en-
ergy accumulation according to 5). According to the ex-
isting experience, the P-wave period of normal adults is
about 0.1s, the QRS group is 0.06-0.1 s, and the T-wave
period longer than the former two, indicating that the cor-
responding frequencies of these components are all below
110Hz. This is consistent with the results in Figure 5.

Fig. 5: Logarithmic amplitude spectrum and cumulative
distribution of spectral energy in frequency domain of
positive semi-axis
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In addition, compared before and after noise reduction, it
can be found that the 50Hz power frequency interference
is greatly suppressed, while the effective information is
fully preserved. The signal after noise reduction can be
fully identified and resolved by Heartpy (Figure 6d).

In the resting state of the subjects, the heart rate data ob-
tained through pulse counting, the self - developed heart
rate (HR) algorithm, and the Heartpy heart rate algorithm
are presented in Table 1. When compared within the same
row, the results of these three methods are similar, and the
difference is no more than 1. Based on the correlation de-
gree of the three columns of data, the correlation matrix is
calculated as shown in Figure 6a. Taking the pulse data as
the benchmark, the Heartpy algorithm indeed outperforms
our self - developed algorithm. However, the results of the
Heartpy algorithm are highly correlated with those of our
algorithm, indicating that the logic of calculating the heart
rate in our method may be similar. Overall, both the self -
developed algorithm and Heartpy exhibit relatively good
heart rate resolution capabilities.

Table 1: HR(bpm) comparison by various methods

HR_Impulse Custom Heartpy()

76 75(±3) 75.17
74 75(±3) 74.72
76 76(±2) 76.32

According to the spectral performance of the 1000Hz
sampling result, take fupper = 200Hz, so a group of sam-
pling groups such as 1000, 400, 200, 100, and 50Hz are
obtained. The influence of different sampling frequen-
cies on the ECG signal is shown in Figure 7. High-
frequency sampling retains some high-frequency infor-
mation, and naturally retains the power-frequency inter-
ference of 50Hz. Note that Sample 5, that is, the re-
sult of 50Hz sampling, effectively suppresses the power-
frequency interference. On the right-hand side of the
spectrum, it’s clear that the 50 Hz peak has been erased.
But it also suppresses the effective signal, resulting in in-
formation loss. For example, in the second period of the
right end of Sample 5, the peaks of R and T waves are
very close, which is obviously abnormal.

Fig. 7: Sample frequency’s influence on ECG signal

It is noted that the sampling at 50Hz is still not enough
to show the significant impact of low sampling on in-
formation loss, and the sampling results themselves are
different in different environments. Here the results of
1000Hz sampling are down-sampled to 400, 200, 100, 50,
and 25Hz. The results are shown in Figure 8. It can be
found that the 50Hz signal eliminates most of the power
frequency interference, and the R wave is also suppressed,
which is the same as the previous discussion results. But
in the case of 25Hz, the loss of information can be clearly
found, which is manifested as the R wave and the T wave
are flat. The reason is that the period of the T wave is
higher than that of the R wave, etc., so it is less suppressed
by low sampling than the latter.

Fig. 8: Resample frequency’s influence on ECG signal

In order to eliminate the influence caused by the asyn-
chronous measurement of the three leads, the R wave peak
value of each cycle and the average value of the adjacent
R wave intervals are extracted to form the peak sequence
(Figure 9). This can achieve the alignment of the R waves
between the three leads. Further, the three leads are nor-
malized here to eliminate the interference of different ex-
perimental environments on signal acquisition, especially
signal drift. The deviation between the experimental data
and the theoretical value of Einthoven is finally obtained
as shown in Figure 9.
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Fig. 6: Analysis Data: a. Correlation coefficient matrix heat map by the heart rates acquired through impulse, custom method
and Hertpy library; b. Time-domain images of the original and processed signals at a sampling rate of 400 Hz; c. Frequency-
domain images of the original and processed signals at a sampling rate of 400 Hz; d. Recognition and computed results from
Heartpy library; e, f. Amplified region from b and c.

Fig. 9: Verification for Einthoven’s law

In this verification analysis of electrocardiogram signal
data and Einthoven’s law, corresponding results as shown
in Table 2 were obtained through processing and analyz-
ing the collected data. At a significance level of 0.05, the
p-value obtained from a one-sample t-test is about 0.72,
the t-statistic is about -0.37, and the mean of the error se-
quence is about -0.003. This indicates that the mean of
the Einthoven error sequence is not significantly differ-
ent from 0. Overall, the actual measured data is relatively
consistent with Einthoven’s law. However, although the
mean difference is not significant, there is still some fluc-
tuation as seen from the standard deviation of the error se-
quence (about 0.044). A smaller standard deviation means

less data fluctuation and more reliable results; the current
standard deviation suggests that the data stability is at a
certain level. To further improve the reliability of the re-
sults, it may be necessary to optimize the data acquisition
or analysis methods.

Statistical indicators value

t -0.3690351513095924
p 0.715208649942736
µ -0.003243567066511931
σ 0.04394658686308754

Table 2: Statistical analysis for the error data

As shown in Figure 10, the introduction of electromyog-
raphy (EMG) creates messy peaks that may bury the ECG
signal. From the spectral point of view, EMG introduces
more components above 30Hz, and from the cumulative
distribution of the frequency domain, EMG introduces
more energy in the high frequency region. There is a step
in the original data source (blue), which is from the power
frequency interference of 50Hz. The signal under EMG
interference does not have this step, and it may be that
the power frequency interference is buried in the EMG
signal. Naturally, the measurement quality of HR has de-
clined. However, it is worth noting that Heartpy still has
relatively excellent HR resolution.
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Fig. 10: EMG interference effect

Figure 11 shows the actual operation interface of the We-
bUI.

Fig. 11: WebUI interface snapshot

4 DISCUSSION

In our designed filtering process, we applied an ideal
band-stop filter because the performance of traditional
Butterworth and Chebyshev filters is limited under condi-
tions of high 50Hz power line interference. Although But-
terworth filters have flat passbands and stopbands, their
transition bands are wide, preventing sharp cutoff near the
interference frequency, thus making it difficult to com-
pletely eliminate the interference. Chebyshev filters, of-
fering steeper cutoff slopes, might lead to reduced out-
put signal quality due to ripple in the passband and stop-
band, and their initial stopband attenuation may not be

sufficient to handle extremely strong power line interfer-
ence. In contrast, ideal band-stop filters can precisely
block specific frequencies within a very narrowband. Al-
though theoretically challenging to achieve perfectly, in
digital signal processing, their effect can be approximated
through algorithms, thereby effectively eliminating spe-
cific frequency interference.

We also discovered significant interference during muscle
contraction activities due to active EMG signals. These
myoelectric signals are generated from motor neurons that
are a part of the central nervous system [1]. Since mus-
cle tissues can conduct electric signals similar to the way
nerves do, they can form muscle action potentials during
muscle movements. Although the human body is electri-
cally neutral, the nerve cell membranes are depolarized in
the resting state due to differences in concentrations and
ionic composition and thus form a potential difference be-
tween intra-cellular and extra-cellular fluids of the cell.
This in turn stimilates muscle fibres and makes them de-
polarized [2]. The EMG signal shows the muscle response
to neural stimulation and appears random which reduces
the quality of ECG signals.

In the experiment of verifying Einthoven’s law, the LII
amplitude is almost identical to the sum of LI and LIII
amplitudes despite negligible errors. These errors may
the consequence of the following factors: inconsistent
data from asynchronous acquisition, phase deviation dur-
ing alignment, and hardware limitations. The three signals
were not collected at the same time so there could be fluc-
tuation in signals even though the subject was stable. The
electrical components including resistors, capacitors and
wires were not ideal and could also contribute to the devi-
ations. Subsequent data processing could decrease but not
completely diminish the errors. Improving the circuits to
collect data synchronously from three leads may help fur-
ther reduce the errors.

In the increasing digital age, countless data is measured
and stored for later analysis. Biomedical data can reveal
a person’s physical and mental status and is a valuable
resource for research in human activities. During data ac-
quisition process, researchers and institutions should in-
form the test subject of the data usage and respect the test
subject’s will, and the experiment should be conducted
under international and local regulations and the consent
of the subject. Acquired biomedical data should be kept
for research use only and not propagated on malicious
purposes. Therefore, the test subject in our experiment
was provided with an informed consent form and signed
it with us. The consent form was attached in the appendix.

In the digital medical environment, there are many ethi-
cal considerations involved in deciding whether to adopt
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over- or under-sampling. Oversampling can improve the
detail of data, but it can capture more high-frequency in-
formation such as EMG signal, reduce the specificity of
diagnosis, and increase the risk of data privacy and se-
curity, it also violates the "Principle of minimum neces-
sity" in medical ethics, which is to collect more data than
is necessary. However, the lack of information may lead
to inaccurate diagnosis, increase the risk of misdiagno-
sis or missed diagnosis, and impair the rights of subjects.
Therefore, we need to select the appropriate sampling fre-
quency, neither undersampling nor oversampling. In the
case of electrocardiogram (ECG), the recommended sam-
pling rate is usually about 400 Hz, which can balance
data quality and processing requirements, and avoid ethi-
cal questions as much as possible.

5 WORK DISTRIBUTION

Sitian Zhong: Introduction and abstract
Yantong Liu: Matlab GUI Design and Method of proce-
dure 1
Renjie Mei: WebUI Design and Code, Method and Re-
sult about Procedure 2
Ye Li: Discussion

6 APPENDIX

Informed Consent:
Separate documentation is also attached to the GitHub
repository.

Code Acquisition:
The code for this study has been open-sourced and can be
accessed and downloaded via the following GitHub link:
https://github.com/MajorDionysus/IME_Expriment_I_La
b2.git

REFERENCES

[1] V. Gohel and N. Mehendale. Review on electromyog-
raphy signal acquisition and processing. Biophysical
reviews, 12(6):1361–1367, 2020.

[2] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin.
Techniques of emg signal analysis: detection, pro-
cessing, classification and applications. Biological
procedures online, 8:11–35, 2006.

7

https://github.com/MajorDionysus/IME_Expriment_I_Lab2.git
https://github.com/MajorDionysus/IME_Expriment_I_Lab2.git

	Introduction
	Method and Material
	Material
	Procedure1: Design GUI
	Procedure 2: System Detection and Further Research
	Bandwidth and Noise Analysis
	Verification of Einthoven’s Law


	Result
	Discussion
	Work Distribution
	Appendix

